

Structural Model Complexes for 2-Oxoglutarate Dependent Iron Enzymes

Rainer Müller, Nicolai Burzlaff*

Rainer.M.Mueller@uni-konstanz.de

Fachbereich Chemie, Universität Konstanz, Fach M728, 78457 Konstanz

2-Oxoglutarate Dependent Iron Enzymes

In recent years protein structures of several 2-oxoglutarate dependent mononuclear non heme iron(II) oxygenases were resolved, such as deacetoxycephalosporin C synthase (DAOCS) ^[1] and taurine dioxygenase (TauD)^[2].

In the active site of these enzymes the iron(II) centre is

coordinated by two histidines and one aspartate or glutamate, the so-called 2-His-1-carboxylate facial triad ^[3]. The 2-oxoglutarate co-substrate is bound via one carboxylate and the 2-oxo group to the iron center (Fig.1).

Scheme 1: Synthesis of carboxylato complexes

Fig.1: Active site of TauD with 2-oxoglutarate and taurine substrate (PDB-Code: 1GY9)^[2]

Fig.2: X-ray structure of $[(bdmpza)Ru(H_2O)(OAc)(PPh_3)]$

Carboxylato and 2-oxo carboxylato complexes are obtained by reaction of the ruthenium(II) complex $[(bdmpza)RuCl(PPh_3)_2]^{[4]}$ (bdmpza = bis(3,5dimethylpyrazol-1-yl)acetate) with the corresponding thallium carboxylates (Scheme 1) [5].

Reaction of the carboxylato complexes with 2-oxo acids also yields the 2-oxo carboxylato complexes. This reaction can be compared with the regeneration step of 2-oxoglutarate dependent enzymes (Scheme 2). The coordination of the 2-oxo acid in the model complex is the same as in the enzyme (Fig. 1 & 3). The keto function binds *trans* to the carboxylate group of the aspartate or glutamate in the enzyme and trans to the carboxylate group of the bdmpza ligand in the model.

Fig.3: Molecular structure of $[(bdmpza)Ru(O_2CC(O)Ph)(PPh_3)]$

Scheme 2: Reaction cycle in 2-oxoglutarate dependent emzymes

Iron Enzyme Inhibitors

The 2-oxoglutarate analogue *N*-oxalylglycine is a lead structure for inhibitors of enzymes such as prolyl 4-hydroxylase^[6] and factor inhibiting HIF (FIH) (Fig.4)^[7]. These inhibitors might be used in the therapy of rheumatoid arthritis and other fibrotic diseases^[6]. The 2-benzoyl-cyclohexane-1,3-diones type herbicides are potent inhibitors for the 4-hydroxyphenylpyruvate dioxygenase (HPPD). These triketons are also of pharmaceutical use for treatment of tyrosinaemia^[8].

Fig.4: X-ray structure of the active site of FIH with *N*-oxalylglycine inhibitor (PDB-Code: 1H2K)^[7]

like H_2O_2 or iod	e they oxidize
diphenylsulfi	me 4) and
cyclohexene () in a bio-
inspired "perox	ype reaction.

$(bdmpza)Ru(PPh_3)(O_2CCH_3)$ 3a	PmO	15,5	1,55
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Ph) 3c	H_2O_2	97.2	9.72
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Ph) 3c	PhIO	69.8	6.98
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Me) 3e	H ₂ O ₂	21.7	2.17
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Me) 3e	PhIO	51,7	5.17

Scheme 6. Cataly	vtic active model	complexes
Concine of Outar	y lio dolive model	

(oumpza) Ku $(\text{PPn}_3)_2 \subset \mathbf{I}$	ГШО	42,1	4,21
(bdmpza)Ru(PPh3)(O2CCH3) 3a	H ₂ O ₂	37.8	3.78
(bdmpza)Ru(PPh ₃)(O ₂ CCH ₃) 3a	PhIO	75,3	7.53
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Ph) 3c	H ₂ O ₂	97.2	9.72
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Ph) 3c	PhIO	69.8	6.98
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Me) 3e	H ₂ O ₂	-	-
(bdmpza)Ru(PPh ₃)(O ₂ CC(O)Me) 3e	PhIO	51,7	5.17

Literature:

[1] K. Valegård, A. C. Terwisscha van Scheltinga, M. D. Lloyd, T. Hara, S. Ramaswamy, A. Perrakis, A. Thompson, H. J. Lee, J. E. Baldwin, C. J. Schofield, J. Hajdu, I. Andersson, *Nature* 1998, 394, 805-809. [2] J. M. Elkins, M. J. Ryle, I. J. Clifton, J. C. Dunning Hotopp, J. S. Lloyd, N. I. Burzlaff, J. E. Baldwin, R. P. Hausinger, P. L. Roach, *Biochemistry* **2002**, *41*, 5185-5192. [3] E. L. Hegg, L. Que Jr., *Eur. J. Biochem.* **1997**, *250*, 625-629. [4] A. López Hernández, R. Müller, H. Kopf, N. Burzlaff, Eur. J. Inorg. Chem. 2002, 671-677. [5] R. Müller, E. Hübner, N. Burzlaff, Eur. J. Inorg. Chem. 2004, 2151-2159. [6] C. J. Cunliffe, T. J. Franklin, N. J. Hales, G. B. Bill, J. Med. Chem. 1992, 35, 2652-2658. [7] J. M. Elkins, K. S. Hewitson, L. A. McNeill, J. F. Seibel, I. Schlemminger, C. W. Pugh, P. J. Ratcliffe, C. J.

Schofield, J. Biol. Chem. 2003, 278, 1802-1806. [8] D. L. Lee, C. G. Knudsen, W. J. Michaely, H.-L. Chin, N. H. Nguyen, C. G. Carter, T. H. Cromartie, B. H. Lake, J. M. Shribbs, T. Fraser, Pestic. Sci. 1998, 54, 377-384.

Acknowledgement:

The financial support of the Fonds der Chemie (Liebig-Stipendium granted to N. B.), the European Commission (Copernicus 2 Program, Contract no° ICA2-CT-2000-10002) and the Deutsche Forschungsgemeinschaft (BU 1223/4-1 and BU 1223/2-1) is gratefully acknowledged. Special thanks to Prof. Dr. H. Fischer for support and discussion. We acknowledge a generous gift of rutheniumtrichlorid-hydrate by the Degussa AG.